Supplementary Table1. Serum CTX assay of all genetic mouse models

Table S1. Bone resorption parameter- serum CTX-I

Groups	CTX-I
WT (n=5)	25.74±6.77
Dmp1Cre; Wnt1 ^{1/7} (n=5)	23.75±4.2
WT (n=4)	16.97±8.48
Dmp1Cre; Rosa26 Wnt1/+ (n=4)	37.83±7.2
WT (Vehicle treated) (n=5)	41.47±14.9
Dmp1Cre; Rosa26 Wnt1/* (Vehicle treated) (n=4)	40.31±15.93
WT (Rapamycin treated) (n=5)	61.33±23.51
Dmp1Cre; Rosa26 Wht1/+ (Rapamycin treated) (n=4)	68.87±26.41
WT (n=5)	25.49±11.74
Dmp1Cre; Tsc1 ^{trr} (n=4)	36.69±10.9
<i>Wnt1</i> ^{sw/sw} (n=5)	33.52±10
Dmp1Cre; Tsc1 ^{i/i} ; Wnt1 ^{sw/sw} (n=5)	28.48±8.57
WT (Vehicle treatment) (n=7)	19.85±6.97 —
WT (Scl-Ab treatment) (n=4)	35.48±6.83
Wnt1 ^{sw/sw} (Vehicle treatment) (n=8)	35.02±6.66
Wnt1 ^{sw/sw} (ScI-Ab treatment) (n=8)	33.34±5.46

Data is presented as mean±standard deviation. *P<0.05, **P<0.01, ***P<0.001

Supplementary Figure 1. Generation of a *Wnt1* conditional knockout mouse model and the construct of the *Rosa26-Wnt1* mouse model. (A) First, a knockout-first mouse carrying European Conditional Mouse Mutagenesis (EUCOMM) allele (*Wnt1^{EUCOMM}*) was generated. Then, *Wnt1^{EUCOMM}* was crossed with Rosa26-Flippase (*Flp*) mice to delete β -gal and the neo cassette, which results in generation of conditional knockout allele (*Wnt1^{ff}*). (B) In *Rosa26^{Wnt1/+}* mice, the *Wnt1::GFP* construct was knocked in *Rosa26* locus with transcriptional stop signal flanked by *loxP* site. (C) Body weight of female WT and *Dmp1Cre; Wnt1^{ff}* mice at two months old. Results are shown as means±SDs (n=9 per group). The comparison between WT versus mutant mouse is determined by Student's *t*-test. *P<0.05, **P<0.01, ***P<0.001

Supplementary Figure 2. The phenotypes of bone-specific *Wnt1* loss-of-function (*Dmp1Cre; Wnt1*^{f/f}) and gain-of-function (*Dmp1Cre; Rosa26*^{Wnt1/+}) mouse models. (A) μCT analysis of female WT and *Dmp1Cre; Wnt1*^{f/f} mice; L4 vertebrae for bone volume/total volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular space (Tb. Sp), and cortical bone for cortical thickness (Cort. Th). Results are shown as means±SDs (n=8 per group). (B) μCT analysis of male WT and *Dmp1Cre; Wnt1*^{f/f} mice; femoral trabecular bone for bone volume/total volume (BV/TV), trabecular for bone volume/total volume (BV/TV), trabecular bone for bone volume/total volume (BV/TV) (BV/TV))

bone for cortical thickness (Cort. Th). Results are shown as means±SDs (n=7 per group). (C) µCT analysis of male WT and Dmp1Cre; Wnt1[#] mice; L4 vertebrae for bone volume/total volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular space (Tb. Sp), and cortical bone for cortical thickness (Cort. Th). Results are shown as means±SDs (n=7 per group). (D) μ CT analysis of female WT and *Dmp1Cre*: *Rosa26^{Wht1/+}* mice; L4 vertebrae for bone volume/total volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular space (Tb. Sp), and cortical bone for cortical thickness (Cort. Th). Results are shown as means±SDs (n=6 per group). (E) µCT analysis of male WT and *Dmp1Cre; Rosa26^{Wnt1/+}* mice; femoral trabecular bone for bone volume/total volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular space (Tb. Sp), and cortical bone for cortical thickness (Cort. Th). Results are shown as means \pm SDs (n= 4 per group). (F) μ CT analysis of male WT and Dmp1Cre; Rosa26^{Wnt1/+} mice; L4 vertebrae for bone volume/total volume (BV/TV), trabecular number (Tb. N), trabecular thickness (Tb. Th), trabecular space (Tb. Sp), and cortical bone for cortical thickness (Cort. Th). Results are shown as means±SDs (n= 4 per group). The comparison between WT versus mutant mouse is determined by Student's *t*-test. *P<0.05, **P<0.01, ***P<0.001

Supplementary Figure 3. Phenotypic corrections of *Wnt1*^{sw/sw} mice after treatment with Sclerostin-neutralizing antibody (Scl-Ab) in L4 vertebrae. (A) X-ray radiograph and μ CT image of L4 vertebrae of WT and *Wnt1*^{sw/sw} mice treated with vehicle control or Scl-Ab. (B) μ CT analysis of L4 vertebrae for bone volume/total volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular space (Tb.Sp) in WT and *Wnt1*^{sw/sw} mice treated with vehicle control or Scl-Ab. Results are shown as means±SDs (n=7 for WT, n=3 for WT with Scl-Ab, n=8 for *Wnt1*^{sw/sw}, n=7 for *Wnt1*^{sw/sw} with Scl-Ab). The comparisons between WT mice with vehicle versus Scl-Ab treatment and *Wnt1*^{sw/sw} mice with vehicle versus Scl-Ab treatment are determined by Mann-Whitney U test. *P<0.05, **P<0.01, ***P<0.001