Ly6Clo monocytes drive immunosuppression and confer resistance to anti-VEGFR2 cancer therapy

Keehoon Jung, Takahiro Heishi, Omar F. Khan, Piotr S. Kowalski, Joao Incio, Nuh N. Rahbari, Euheon Chung, Jeffrey W. Clark, Christopher G. Willett, Andrew D. Luster, Seok Hyun Yun, Robert Langer, Daniel G. Anderson, Timothy P. Padera, Rakesh K. Jain, and Dai Fukumura

Introduction

Angiogenesis is a hallmark of cancer (1). The VEGF signaling pathway is a key component of pathological angiogenesis in most cancers (2–5). To date, 10 anti-VEGF drugs have been approved by the FDA to treat various solid tumors, starting with metastatic colorectal cancer (CRC) in 2004 (1). However, the survival benefit from these drugs is modest, as tumors develop resistance to these agents (3, 4, 6–13). The mechanisms of resistance remain far from understood.

Current anti-VEGF therapies for colorectal cancer (CRC) provide limited survival benefit, as tumors rapidly develop resistance to these agents. Here, we have uncovered an immunosuppressive role for nonclassical Ly6Clo monocytes that mediates resistance to anti-VEGF treatment. We found that the chemokine CX3CL1 was upregulated in both human and murine tumors following VEGF signaling blockade, resulting in recruitment of CX3CR1+Ly6Clo monocytes into the tumor. We also found that treatment with VEGFA reduced expression of CX3CL1 in endothelial cells in vitro. Intravital microscopy revealed that CX3CR1 is critical for Ly6Clo monocyte transmigration across the endothelium in murine CRC tumors. Moreover, Ly6Clo monocytes recruit Ly6Glo neutrophils via CXCL5 and produce IL-10, which inhibits adaptive immunity. Preventing Ly6Clo monocyte or Ly6Glo neutrophil infiltration into tumors enhanced inhibition of tumor growth with anti-VEGFR2 therapy. Furthermore, a gene therapy using a nanoparticle formulated with an siRNA against CX3CL1 reduced Ly6Clo monocyte recruitment and improved outcome of anti-VEGFR2 therapy in mouse CRCs. Our study unveils an immunosuppressive function of Ly6Clo monocytes that, to our knowledge, has yet to be reported in any context. We also reveal molecular mechanisms underlying antiangiogenic treatment resistance, suggesting potential immunomodulatory strategies to enhance the long-term clinical outcome of anti-VEGF therapies.

Ly6Clo monocytes recruit Ly6Glo neutrophils via CXCL5 and produce IL-10, which inhibits adaptive immunity. Preventing Ly6Clo monocytes or Ly6Glo neutrophil infiltration into tumors enhanced inhibition of tumor growth with anti-VEGFR2 therapy. Furthermore, a gene therapy using a nanoparticle formulated with an siRNA against CX3CL1 reduced Ly6Clo monocyte recruitment and improved outcome of anti-VEGFR2 therapy in mouse CRCs. Our study unveils an immunosuppressive function of Ly6Clo monocytes that, to our knowledge, has yet to be reported in any context. We also reveal molecular mechanisms underlying antiangiogenic treatment resistance, suggesting potential immunomodulatory strategies to enhance the long-term clinical outcome of anti-VEGF therapies.
These CX3CR1+Ly6C^{lo} monocytes produce CXCL5 to recruit neutrophils to the tumors and create an immunosuppressive microenvironment. Furthermore, we developed a gene therapy method to target CX3CL1, which significantly improved the efficacy of anti-VEGF cancer therapy by inhibiting CX3CR1+Ly6C^{lo} monocyte infiltration. These findings, based on multimodal approaches, including genetic ablation of chemokine receptors and intravital multiphoton microscopy, offer a mechanistic basis to develop novel and efficient immunotherapeutic strategies to treat solid cancers.

Results

Anti-VEGFR2 therapy induces accumulation of monocytes and neutrophils in CRCs. To examine the role of the immune microenvironment in CRCs, we utilized 2 syngeneic murine CRC models—SL4 and CT26—orthotopically implanted in C57BL/6 and BALB/c mice, respectively. We also studied spontaneous rectal tumors in conditional Apc mutant mice (Apc^{fl/fl}Ad-Cre) (33). We used DC101, a monoclonal antibody against VEGFR2, to inhibit angiogenesis (34). We observed vessel regression and increased hypoxia on days 5 and 12 after DC101 treatment compared with the control, while there were no observable changes in microvessel density (MVD) or hypoxia on day 2 (Supplemental Figure 1, A–D; supplemental material available online with this article; https://doi.org/10.1172/JCI93182DS1). Interestingly, there were differences in responses to DC101 between the 2 orthotopic CRC models, with SL4 being more sensitive to antiangiogenic therapy than CT26. After DC101 monotherapy, the SL4 tumor size was approximately 40% of that of the control, while CT26 tumor size was approximately 70% (Figure 1, A and B).

Consistent with published data from anti-VEGF therapies in other tumor models (23), we found a significant increase in CD11b⁺Gr1⁺ myeloid cells in our CRC models after DC101 treatment (Supplemental Figure 2A). However, the CD11b⁺Gr1⁺ cells represent a heterogeneous mixture of monocytic and granulocytic myeloid cells (28–30, 35). Although separate analyses for the different subpopulations of myeloid cells are essential for better understanding of the biology, the definition of CD11b⁺Gr1⁺ cell subpopulations using surface markers has been ambiguous among research groups. Previous studies have focused on Gr1^{hi} (Ly6G⁺) myeloid cells (26, 28, 35–43). In this study, we clearly discriminate between Ly6C^{hi} and Ly6G⁺ myeloid cell subsets based on CX3CR1 and Ly6C expression.

These CX3CR1+Ly6C^{lo} monocytes produce CXCL5 to recruit neutrophils to the tumors and create an immunosuppressive microenvironment. Furthermore, we developed a gene therapy method to target CX3CL1, which significantly improved the efficacy of anti-VEGF cancer therapy by inhibiting CX3CR1+Ly6C^{lo} monocyte infiltration. These findings, based on multimodal approaches, including genetic ablation of chemokine receptors and intravital multiphoton microscopy, offer a mechanistic basis to develop novel and efficient immunotherapeutic strategies to treat solid cancers.
on their immunophenotype (i.e., Ly6C⁺ monocytes and Ly6G⁺ neutrophils, respectively) (Figure 1C) (gated on CD45⁺Lin[−] F4/80[−] CD11c[−] CD11b⁺). Furthermore, we also identified a Ly6C⁺Ly6G⁺ population, Ly6C⁺ monocytes (Figure 1C), which have not been reported in tumors after anti-VEGF therapy. These cells display a high level of CX3CR1, while Ly6C⁺ monocytes and Ly6G⁺ neutrophils (hereafter referred to as neutrophils) express CCR2 and CXCR2, respectively (25, 39, 44) (Supplemental Figure 2B).

Anti-VEGFR2 therapy facilitates early infiltration of Ly6C⁺ monocytes into tumors. Among the 3 myeloid cell subpopulations found in SL4 tumors 5 days after DC101 treatment, there was a selective increase in Ly6C⁺ monocytes (380 ± 50 cells/mg) compared with the IgG control (180 ± 40 cells/mg), while the other 2 myeloid cell subsets did not change significantly (Figure 1D). On day 12, we observed a further increase in Ly6C⁺ monocytes (300 ± 70 cells/mg in control vs. 700 ± 110 cells/mg in DC101) and also a significant increase in neutrophils (510 ± 100 cells/mg in control vs. 1050 ± 190 cells/mg in DC101) (Figure 1E). Ly6C⁺ monocytes remained at similar levels between treatment groups on day 12 (Figure 1E). Ly6C⁺ monocytes are also observed in the tumor (C). (D) Snapshot image taken at 8 seconds of Supplemental Video 1 showing flowing (gray), rolling (yellow), and crawling (white) CX3CR1⁺ Ly6C⁺ monocytes inside the blood vessels in an SL4 tumor. (E) Snapshot image showing CX3CR1⁺ Ly6C⁺ monocytes undergoing extravasation in an SL4 tumor. Red, TRITC-dextran (blood vessels). (F) Flux of flowing, rolling, and crawling CX3CR1⁺ Ly6C⁺ monocytes in blood circulation in SL4 tumor-bearing Cx3cr1^{+/+} mice treated with either control rat IgG (C) or DC101 (D). (G) Flux of flowing, rolling, and crawling Ly6C⁺ monocytes in blood circulation in SL4 tumor-bearing C57BL/6 WT mice at 5 days after DC101 treatment. Ly6C⁺ monocytes were isolated from C57BL/6 WT or Cx3cr1^{−/−} mice (KO), fluorescently labeled, and adoptively transferred into DC101-treated SL4 tumor-bearing C57BL/6 WT animals. n = 7/group. Data are represented as mean ± SEM. *P < 0.05, 2-tailed t tests. Data are representative of 3 independent experiments (F and G). Scale bars: 100 μm (B–E).
SL4 tumors in which Ly6Clo monocytes express EGFP (50–52). Rather than local proliferation of Ly6Clo monocytes in the tumor, Ly6Clo monocytes expressed a high amount of CX3CR1 compared with other myeloid cell subsets (Supplemental Figure 2B), and Cx3cr1 gfp/+ knockin mice implanted with tumors served as the source of tumor-infiltrated Ly6Clo monocytes, which interact with the tumor vessels and subsequently transmigrate across the endothelium in a time-dependent manner during antiangiogenic treatment.

Imaging window. (Figure 2A and Supplemental Figure 4). Unlike in previous windows (45, 46), the coverslip was removable for aspirating accumulated fluid, allowing clearer imaging of the gut over 4 weeks using a custom-built video-rate multiphoton microscope (47) (Figure 2, A–F, and Supplemental Figure 4B). Ly6Ces monocytes expressed a high amount of CX3CR1 compared with other myeloid cell subsets (Supplemental Figure 2B), and CX3CR1+ cells in the bloodstream were predominantly monocytic (48–50). Thus, we used Cx3cr1flo/flo knockin mice implanted with SL4 tumors in which Ly6Ces monocytes express EGFP (50–52). In animals treated with DC101, we frequently observed EGFP+ monocytes freely flowing in the blood that then began to interact with the vessel wall — either rolling or crawling (Figure 2, D and E, and Supplemental Figure 5; Supplemental Video 1). Some of the crawling cells subsequently extravasated from the blood vessel (Figure 2E). We found that DC101 significantly increased the number of rolling and crawling EGFP+Ly6Ces monocytes compared with the control on day 6 (Figure 2F). There was no significant change in the leukocyte-endothelial cell interaction in the control tumors over time (Figure 2F). These results show that the blood serves as the source of tumor-infiltrated Ly6Ces monocytes, rather than local proliferation of Ly6Ces monocytes in the tumor parenchyma, that interact with the tumor vessels and subsequently transmigrate across the endothelium in a time-dependent manner during antiangiogenic treatment.

Ly6Ces monocytes require CX3CR1 to infiltrate into tumors. While the CX3CL1/CX3CR1 axis has long been known to be important in chemotaxis (31, 53), it has now become questionable whether CX3CR1 is important for the process of Ly6Ces monocyte recruitment or not (50). There have also been reports suggesting that CX3CR1 deficiency influences the survival of monocytes (54, 55). To determine whether CX3CR1 is critical for Ly6Ces monocyte transmigration across the endothelium, we isolated Ly6Ces monocytes from both WT and Cx3cr1–/– mice that were fluorescently labeled and adoptively transferred into DC101-treated WT mice bearing CRC tumors (Supplemental Videos 2 and 3). Measured by intravitreal microscopy, there was a significant decrease in the number of crawling Ly6Ces monocytes isolated from Cx3cr1–/– mice compared with those isolated from WT mice (Figure 2G). These observations suggest that CX3CR1 plays an important role in chemotaxis-driven transmigration of Ly6Ces monocytes, especially in the process of rolling-crawling transition.

Blockade of VEGF/VEGFR2 signaling upregulates CX3CL1 in both human and mouse CRCs. Next, we examined which factors contribute to the CX3CR1-dependent attraction of Ly6Ces monocytes after DC101 treatment. CX3CL1, also known as fractalkine, is the only known ligand for CX3CR1 (31, 53). Immunohistochemistry showed that CX3CL1 is dramatically upregulated after DC101 treatment (Figure 3). Furthermore, biopsies of rectal carcinomas from patients before and after bevacizumab treatment (56, 57) also showed a significant increase in CX3CL1 expression after bevacizumab treatment (Figure 3, A–C).

By measuring protein levels, we found an increase in CX3CL1 in tumor tissues from day 2 onwards after DC101 treatment (Figure 3, D and E). Furthermore, we found increased CX3CL1 expression in endothelial cells isolated from tumors treated with DC101 (Figure 3G), consistent with published data showing endothelial cells as a source of CX3CL1 (31, 58), while there was no change in CX3CL1 expression in nonendothelial cells (Supplemental Figure 8I). Interestingly, endothelial cells treated with recombinant VEGFA protein to activate VEGF/VEGFR2 signaling in vitro
showed reduced expression of CX3CL1 (Figure 3F). The reduction in CX3CL1 levels was recovered by using DC101 to block VEGF/VEGFR2 signaling (Figure 3F). These results suggest that CX3CL1 is produced by endothelial cells and that production is regulated by VEGFR2 signaling. Furthermore, since the elevation of CX3CL1 expression precedes the induction of hypoxia (Figure 3E and Supplemental Figure 1D), this process may not be hypoxia dependent, although we cannot rule out the contribution of hypoxia in the later time points. Thus, blockade of VEGF/VEGFR2 signaling stimulates robust upregulation of CX3CL1 and causes active recruitment of CX3CR1-Ly6C^{lo} monocytes to tumors.

Ly6C^{lo} monocyte infiltration during anti-VEGFR2 treatment recruits neutrophils. Based on these results, we hypothesized that DC101 treatment facilitates early infiltration of Ly6C^{lo} monocytes (day 5), which subsequently recruit neutrophils to these tumors (day 12) (Figure 1). To test this hypothesis, we selectively inhibited the infiltration of each myeloid cell subset by taking advantage of the unique expression of specific chemokine receptors on their surface, which are critical for their migration (i.e., CX3CR1 on Ly6C^{lo} monocytes, CCR2 on Ly6C^{hi} monocytes) (32, 59) (Supplemental Figure 2B). There was nearly 80% depletion of Ly6C^{lo} monocytes in SL4 tumors growing in Cx3cr1^{−/−} mice when compared with WT mice (Figure 4, A, B, and E). In Ccr2^{−/−} mice, there was an approximately 90% depletion of Ly6C^{hi} monocytes (Figure 4, C and F). Finally, we used an anti-Ly6G neutralizing antibody to pharmacologically deplete the Ly6G⁺ neutrophils (with a depletion efficiency of ~80%) (Figure 4, D and G). Interestingly, DC101-treated tumors in Cx3cr1^{−/−} mice showed not only a lack of Ly6C^{lo} monocytes, but also significantly reduced infiltration of neutrophils compared with WT animals (Figure 4E). On the other hand, administration of an anti-Ly6G antibody selectively depleted Ly6G⁺ neutrophils without affecting Ly6C^{lo} monocytes (Figure 4G and Supplemental Figure 3B). These data indicate that early infiltration of Ly6C^{lo} monocytes during anti-VEGFR2 treatment promotes subsequent recruitment of neutrophils to tumors.

Ly6C^{lo} monocyte infiltration during anti-VEGFR2 treatment recruits neutrophils via CXCL5. We then investigated the underlying mechanisms of how Ly6C^{lo} monocytes attract neutrophils. Ly6C^{lo} monocytes grown in vitro significantly increased the number of neutrophils that migrated to the bottom part of a Boyden chamber, while Ly6C^{hi} monocytes did not (Figure 4H). DC101-treated tumors, characterized by abundant infiltration
of Ly6C^{hi} monocytes compared with the control (Figure 1, D–G), had a significantly higher level of CXCL5, a chemokine known to attract CXCR2⁺ cells (Supplemental Figure 2D). Ly6C^{hi} monocytes secreted high levels of CXCL5 compared with Ly6C^{lo} monocytes (Supplemental Figure 2, B and C). Since neutrophils expressed CXCR2 on their surface (Supplemental Figure 2B), we hypothesized that CXCL5 from Ly6C^{lo} monocytes is a main chemoattractant for neutrophil recruitment. To verify this, we used anti-CXCR2 and anti-CXCL5 neutralizing antibodies and measured impaired neutrophil migration toward Ly6C^{lo} monocytes (Figure 4H). Other chemokines known to bind to CXCR2 (e.g., CXCL1 and CXCL2) did not seem to be crucial for attracting neutrophils in our models (Figure 4H). These results support our hypothesis that Ly6C^{lo} monocytes secrete CXCL5 to recruit neutrophils expressing CXCR2.

Blockade of CX3CR1-dependent infiltration of Ly6C^{lo} monocytes improves efficacy of anti-VEGFR2 therapy. We next determined the in vivo function of each myeloid cell subset by utilizing the aforementioned strategies to specifically inhibit their infiltration in tumors (Figure 4). In Cx3cr1^{−/−} mice, which have reduced tumor infiltration of Ly6C^{lo} monocytes and neutrophils (Figure 4E), DC101 monotherapy exerted an enhanced antitumor effect compared with the same treatment in WT mice (Figure 5A and Supplemental Figure 6). Since neutrophils expressed CXCR2 on their surface (Supplemental Figure 2B), we hypothesized that CXCL5 from Ly6C^{lo} monocytes is a main chemoattractant for neutrophil recruitment. To verify this, we used anti-CXCR2 and anti-CXCL5 neutralizing antibodies and measured impaired neutrophil migration toward Ly6C^{lo} monocytes (Figure 4H). Other chemokines known to bind to CXCR2 (e.g., CXCL1 and CXCL2) did not seem to be crucial for attracting neutrophils in our models (Figure 4H). These results support our hypothesis that Ly6C^{lo} monocytes secrete CXCL5 to recruit neutrophils expressing CXCR2.

Adoptive transfer of Ly6C^{lo} monocytes abrogates improved efficacy of anti-VEGFR2 therapy in Cx3cr1^{−/−} mice. We next carried out a series of adoptive transfer experiments to test whether Ly6C^{lo} monocytes could "rescue" the phenotype in Cx3cr1^{−/−} mice. Tumor weight of DC101-treated Cx3cr1^{−/−} mice that received adoptive transfer of WT Ly6C^{lo} monocytes was significantly lower than that in DC101-treated Cx3cr1^{−/−} mice without cell transfer (Figure 5D). We confirmed that the adoptive transfer increased the numbers of Ly6C^{lo} monocytes and neutrophils in the tumors in Cx3cr1^{−/−} mice (Supplemental Figure 6, D–F). We also adoptively transferred Ly6C^{lo} monocytes isolated from Cx3cr1^{−/−} mice (KO Ly6C^{lo}) twice a week from the beginning of DC101 treatment. Data are represented as mean ± SEM. *P < 0.05 versus with cell transfer (black bar); #P < 0.05 versus Cx3cr1^{−/−} control mice without cell transfer (blue bar).

Figure 5. Blockade of CX3CR1-dependent infiltration of Ly6C^{lo} monocytes improves efficacy of anti-VEGFR2 therapy.

(A) SL4 tumors were grown in C57BL/6 WT mice or Cx3cr1^{−/−} (Cx3cr1^{−/−} KO) mice and treated with either control rat IgG (C) or DC101. Tumor weight was measured on day 12 after treatment (A–D). (B) SL4 tumors were grown in C57BL/6 WT mice or Ccr2^{−/−} (CCR2 KO) mice and treated as indicated. (C) SL4 tumor-bearing C57BL/6 WT mice were treated with either control rat IgG (C), anti-Ly6G antibody (G), DC101 (D), or anti-Ly6G antibody plus DC101 (G+D). Data are represented as mean ± SEM. *P < 0.05 versus without cell transfer (black bar); #P < 0.05 versus Cx3cr1^{−/−} control mice without cell transfer (blue bar).

We next asked whether the tumor-infiltrated Ly6C^{lo} monocytes are able to modulate the tumor immune microenvironment. We found that expression levels of immunosuppressive cytokines (i.e., IL-10 and TGF-β1) were high in both Ly6C^{lo} monocytes and neutrophils in vitro (Supplemental Figure 2, B and C). In vivo, we measured higher levels of immunosuppressive cytokines in DC101-treated tumors, which are abundantly infiltrated by Ly6C^{lo} monocytes and neutrophils, than in the control. Further, immunostimulatory cytokines (i.e., TNF-α and IL-2) were downregulated upon DC101 treatment (Figure 6A and Supplemental Figure 2D). Flow cytometry analyses showed that DC101-treated tumors have...
significantly fewer effector CD4+ and CD8+ T cells compared with control (Figure 6, B and C). Interestingly, lymphocytes in DC101-treated tumors expressed more PD-1, while lymphocytes in control-treated tumors showed more granzyme B expression (Figure 6, D and E, and Supplemental Figure 7A). Furthermore, tumors from DC101-treated Cx3cr1−/− mice, which showed delayed tumor growth (Figure 5A), had higher numbers of CD4+ and CD8+ T cells (Figure 6, B and C). The cells from syngeneic mice were activated and coincubated with either tumor-isolated Ly6Clo monocytes, Ly6Cme monocytes, or neutrophils with or without anti–IL-10 neutralizing antibody as indicated. *P < 0.05. Data are representative of 3 independent experiments.

and suggest that DC101-treated tumors became skewed toward an immunosuppressive phenotype by infiltration of Ly6Clo monocytes (Figure 6, A–E, and Supplemental Figure 7). Ly6Clo monocytes and neutrophils produce IL-10 and inhibit T lymphocyte proliferation. Since Ly6Clo monocytes and neutrophils were more abundant in tumors with an immunosuppressive microenvironment, we further evaluated their capacity to suppress the proliferation of activated T lymphocytes. An in vitro CFSE assay revealed that both Ly6Clo monocytes and neutrophils inhibited CD8+ T cell proliferation (Figure 6F). Ly6Cme monocytes also prevented the proliferation of CD4+ T lymphocytes (Figure 6G). Furthermore, motivated by the findings that Ly6Clo monocytes and neutrophils express a high amount of IL-10 (Supplemental Figure 2, B and C), we found that treatment with an anti–IL-10 neutralizing antibody prevented Ly6Clo monocytes and neutrophils from inhibiting T cell proliferation (Figure 6, F and G). Thus, we hypothesize that DC101-induced recruitment of Ly6Cme monocytes and neutrophils producing IL-10 inhibits effector T cell activation, leading to a shift of the tumor microenvironment toward immunosuppression and thus to an attenuated immune response against the tumor.

In vivo nanoparticle delivery of siCX3CL1 inhibits Ly6Cme monocyte infiltration and enhances efficacy of anti-VEGFR2 therapy. To determine whether CX3CL1 is an initiating molecule to DC101 tumor resistance, we developed a gene therapy method that can be potentially translated into an effective adjunct to anti-VEGF therapy in the clinic using nanoparticles (7C1) delivering siRNA to target endothelial cells in vivo (60) (Figure 7A).

To validate whether the application of 7C1 nanoparticles was feasible for targeting endothelial cells in the tumor microenvironment, we first used nanoparticles formulated with siTIE2, which has already been proven to be efficacious in silencing Tie2 mRNA in several tissues (60). There was a significant decrease in Tie2 expression levels after 7C1-siTIE2 treatment in CRCs (Supplemental Figure 8A). Next, we needed to harness specific siRNA

Figure 6. Ly6Clo monocytes drive immunosuppression during anti-VEGFR2 treatment in CRCs. (A) C57BL/6 WT mice bearing syngeneic orthotopic SL4 tumors were treated with either control rat IgG or DC101. Protein levels were measured on day 12 after treatment from tumor tissue lysates (Supplemental Figure 2D). (B and C) Flow cytometric analysis of CD4+ (B) and CD8+ T cells (C) in SL4 tumors as indicated. White bar, WT mice bearing SL4 tumors treated with control rat IgG; black bar, WT mice bearing SL4 tumors treated with DC101; blue bar, Cx3cr1−/− mice bearing SL4 tumors treated with DC101 without cell transfer; gray bar, DC101-treated Cx3cr1−/− mice received adoptive transfer of tumor-isolated WT Ly6Cme monocytes. The graphs depict data for the absolute number of cells per mg of tumor tissue (B and C). The lymphocyte infiltrate in the tumor was analyzed on day 12 by flow cytometry. (D and E) Flow cytometric analysis of CD8+ T cells. The graphs depict data for granzyme B+ (D) or PD-1+ (E) populations relative to total CD8+ T cells. The lymphocyte infiltrate in the tumor was analyzed on day 12 by flow cytometry. *P < 0.05. Data are represented as mean ± SEM. (F and G) CFSE-based T cell proliferation assays. CellTrace-labeled splenic CD8+ (F) or CD4+ T cells (G) from syngeneic mice were activated and coincubated with either tumor-isolated Ly6Cme monocytes, Ly6Cme monocytes, or neutrophils with or without anti–IL-10 neutralizing antibody as indicated. Data are represented as mean ± SEM. (B–G) Comparison between groups was made using ANOVA with Holm-Šídák post-hoc test. *P < 0.05. Data are representative of 3 independent experiments.
sequences with superior knockdown efficacy against CX3CL1 (siCX3CL1), especially when applied in vivo. We performed in vitro screening with 12 candidate sequences, identified as lead siRNA molecules by in silico predictions of target specificity and activity (Figure 7B). The best duplex with sequence 5′-gcuuGcGAGAGG-GuuuuAAAdTsdT-3′ (sense) (where upper-case letters represent unmodified RNA [2′-OH] residues and lower-case letters represent residues with 2′-O-methyl modification) and 5′-UUuAAAC-CCUCUCGcAAGCdTsdT-3′ (anti-sense) was selected for large-scale synthesis and subsequent nanoparticle formulation (Figure 7B and Supplemental Figure 8B). Importantly, when we compared the knockdown efficiency of our siCX3CL1 (hereafter referred to as Axo-siCX3CL1) and another siRNA against CX3CL1 from a recent publication (61), there was a dramatic enhancement in silencing efficiency for Axo-siCX3CL1 (Supplemental Figure 8C).

Next, we examined the effect of 7C1-Axo-siCX3CL1 in combination with DC101 in CRCs. Treatment with the negative control 7C1-siLUC (silencing luciferase mRNA) did not change tumor growth or immune cell infiltration, and there was no difference between the DC101 group and 7C1-siLUC plus DC101 group (Supplemental Figure 8, D and E). We found that treating with 7C1-Axo-siCX3CL1 significantly enhanced the antitumor effect of anti-VEGFR2 therapy, even though there was negligible effect with 7C1-Axo-siCX3CL1 alone (Figure 7F and Supplemental Figure 8F). We confirmed that treatment of 7C1-Axo-siCX3CL1 markedly reduced DC101-induced upregulation of CX3CL1 in endothelial cells by measuring both mRNA and protein levels (Figure 7, C and D). We also observed that in vivo knockdown of Cx3crl mRNA significantly inhibited the infiltration of Ly6C+ monocytes into DC101-treated tumors and that subsequent tumor growth was delayed compared with control with only DC101 treatment (Figure 7, F). Consistent with our experiments using Cx3cr1−/− mice, 7C1-Axo-siCX3CL1-treated tumors also showed subsequent decrease in Ly6G+ neutrophils, but did not alter Ly6C+ monocytes (Figure 4E and Supplemental Figure 8, G and H). These data confirm that CX3CL1 is an important chemoattractant for Ly6C+ monocytes and contributes to the process of anti-VEGF therapy resistance.
Furthermore, we find that immunosuppression, rather than angiogenesis, in the tumor microenvironment is the key mechanism conferring resistance to anti-VEGF therapy exerted by Ly6C^lo monocytes. Previous reports implicated proangiogenic functions of myeloid cells or monocytes (i.e., CD11b^+Gr1^+ cells or Ly6G^+ granulocytes) in anti-VEGF therapy resistance in some tumors, not their immune-regulatory functions.

Some reports show that low doses of anti-VEGF therapy can induce vascular normalization and improve antitumor immunity (63, 64). It is also known that high dose or prolonged treatment of anti-VEGF therapy promotes hypoxia and immunosuppression in the tumor microenvironment in both clinical and preclinical studies (1, 6, 24, 65–68). The latter case explains one mechanism of anti-VEGF therapy resistance in patients, which is consistent with our observations in CRC models. Indeed, the therapeutic dose of bevacizumab currently used in the clinic is often considered as a high dose (69), which is comparable to the dose we used in our study (maximum effective dose). These findings imply that immune resistance may hinder responsiveness to anti-VEGF/VEGFR therapy. Here, we claim that high-dose anti-VEGFR2 therapy induces immunosuppression and that this occurs via an endothelial CX3CL1/Ly6C^lo monocyte mechanism.

In this study, we clearly distinguished 3 different innate immune cell subpopulations based on their immunophenotype (i.e., Ly6C^lo monocytes) and their respective roles in resistance to antiangiogenic cancer therapy. However, our data show that Ly6C^lo monocytes along with their immunosuppressive functions form a distinct population of myeloid cells, which are immunophenotypically different from the Gr1^+ or TIE2^+ monocytes and granulocytic cells described previously. We identified Ly6C^lo monocyte infiltration after anti-VEGFR2 therapy, and these cells were not observed in previous reports on anti-VEGF cancer therapy. Our study is the first report, to our knowledge, that investigates the ability of Ly6C^lo monocytes to confer resistance to anti-VEGF cancer therapy.

Furthermore, we find that immunosuppression, rather than angiogenesis, in the tumor microenvironment is the key mechanism conferring resistance to anti-VEGF therapy exerted by Ly6C^lo monocytes. Previous reports implicated proangiogenic functions of myeloid cells or monocytes (i.e., CD11b^+Gr1^+ cells or Ly6G^+ granulocytes) in anti-VEGF therapy resistance in some tumors, not their immune-regulatory functions.
therapeutic benefits observed in this study, we look forward to further applications of 7C1 nanoparticles for treatment strategies of various diseases.

While it is clear that endothelial cells in the CRC microenvironment produce and upregulate CX3CL1 expression upon anti-VEGF2 treatment, it is conceivable that there may be other cell types expressing CX3CL1 in the tumor microenvironment. Here, we demonstrate that targeting CX3CL1 in endothelial cells is sufficient to block the infiltration of Ly6C^{lo} monocytes and improve survival (Figure 7). These data indicate endothelial cell-derived CX3CL1 plays a key functional role in the recruitment of Ly6C^{lo} monocytes in CRCs during anti-VEGF2 treatment.

It could be argued that the recruitment of Ly6C^{lo} monocytes might be explained by the antibody opsonization of the endothelial cells that express VEGF2. However, we think this is not the case, as the increase in tumor infiltration of Ly6C^{lo} monocytes was mimicked by the treatment of an antibody blocking VEGF (data not shown).

Tumors often escape antitumor immune responses through critical immune checkpoint molecules. The recent approval of drugs targeting PD-1 or CTLA-4 shows the potential for inhibiting these pathways. However, this strategy is effective only in some tumor types and in only a portion of patients. Recently, 2 studies revealed that inhibition of granulocyte recruitment into tumors improves the efficacy of the immune checkpoint blockade (35, 41). Our data describing the immunosuppressive functions of Ly6C^{lo} monocytes identify another path for the development of therapeutic strategies that can create synergy with the FDA-approved immune checkpoint inhibitors.

In addition, our cecum-imaging window, developed in this study, enabled quantification of dynamic mobilization of Ly6C^{lo} monocytes with various types of behaviors over time, unveiling their CX3CR1-dependent infiltration into the tumor from the blood. The cecum window allowed longitudinal imaging for over 4 weeks, unparalleled by other imaging windows for the gut, that are applicable only for acute or short-term monitoring. The cecum window can be more broadly applied for investigations of both malignant and nonmalignant chronic diseases of the gut, such as inflammatory bowel disease and disorders related to the gut microbiota.

In summary, we found that Ly6C^{lo} monocytes are important drivers of resistance to antiangiogenic therapy in CRCs through their immunosuppressive functions. Moreover, the increase in CX3CL1 after antiangiogenic therapy in mouse models mirrored the findings in human tumor specimens. This supports our model that CX3CL1 upregulation results in the recruitment of Ly6C^{lo} monocytes, which attract neutrophils to the tumor via CXCL5 and inhibit effector T cell formation (Figure 8). The multistep process provides multiple points of intervention to prevent immune suppression and improve the effectiveness of anti-VEGF therapy by modulating the immune microenvironment.

Methods
For more details, see Supplemental Methods.

Animals. Cx3cr1^{−/−} mice were originally provided by Dan R. Litman (New York University School of Medicine, New York, New York, USA) (51). Ccr2^{−/−} mice were purchased from Jackson Laboratories (stock number 004999). Homozygous Cx3cr1^{−/−} mice were used for the Cx3cr1^{−/−} model. Cx3cr1^{F^{lo}+} mice were obtained by breeding...
C57BL/6J mice with C57BL/6 WT mice. Cx3cr1△/- mice have 1 Cx3cr1 allele replaced with cDNA encoding YFP. Mice were 8 to 10 weeks old.

CRC cell preparation. SL4 (71) murine CRC cells were cultured in DMEM/F12 1:1 mixture medium supplemented with 10% FBS, and CT26 (72) murine CRC cells were cultured in RPMI-1640 medium supplemented with 10% FBS prior to implantation. Subconfluent SL4 or CT26 cells were harvested, washed with PBS, and counted. Tumor cell suspension was mixed with Matrigel (catalog 354262, Corning) in a 1 to 1 proportion by volume.

Orthotopic CRC and spontaneous rectal tumor model and treatment regimen. For the orthotopic CRC model, 8- to 10-week-old male C57BL/6J (for SL4 implantation) and BALB/c (for CT26) mice were anesthetized with intraperitoneal injection of ketamine (100 mg/kg) and xylazine (10 mg/kg). Abdominal hair was removed, and a 10-mm midline incision was made. The cecum was exteriorized, and 5 × 10^5 cells in 10 μl of PBS/Matrigel complex were injected into the cecal wall between the serosa and mucosa from the serosal side using an insulin syringe with a 27-gauge needle (71, 72). The cecum was returned to the abdominal cavity, and the abdominal wall was closed with 5-0 polylysor suture (Covidien), followed by skin closure with surgical staples. Tumor size was monitored either by measuring the activity of secreted Gaussia luciferase (GLuc) (73, 74) or by imaging with ultrasound twice a week. For the spontaneous rectal tumor model, conditional Apc knockout mice were used as described previously (33).

When tumor diameter reached 4 mm, tumor-bearing mice were randomly assigned into different treatment groups and treated accordingly. Every 3 days, 40 mg/kg of DC101 (ImClone Systems/Eli Lilly), a monoclonal anti-VEGFR2 antibody, was administrated intraperitoneally. Control mice received 40 mg/kg of rat IgG intraperitoneally every 3 days. To deplete neutrophils, 5 mg/kg of anti-Ly6G antibody (BioXCell, clone 1A8, catalog BE0075-1) was administered intraperitoneally every 3 days. To silence Tie2 mRNA, 1 mg/kg of 7C1-siTIE2 was injected intravenously. To silence Cx3cl1 mRNA, 1 mg/kg of 7C1-Axo-siCX3CL1 was administered intravenously every 3 days. Either 5 or 12 days after treatment, mice were sacrificed and tumor samples were taken, measured, weighed, and used for further analyses.

Blood GLuc assay. In order to monitor SL4 tumor size in the orthotopic implantation model, blood GLuc activity was measured as described previously (73, 74). In short, the SL4-Luc cell line was established by transduction of lentivirus encoding the GLuc gene and infected reagents. KJ, TH, OFK, PSK, JJ, NNR, and EC performed research. JWC and CGW contributed reagents. KJ, TH, OFK, ADL, SHY, TPP, RKJ, and DF analyzed data. KJ, SHY, TPP, RKJ, and DF wrote the paper.

Acknowledgments

This work was supported by National Cancer Institute (NCI) program project grant P01-CA080124 (to RKJ and DF) and also in part by NCI grants R01-CA126642, R35-CA197743 (to RKJ) and R01-CA096915 (to DF); the NCI/Federal Share Proton Beam Program Income (to RKJ); NIH DP2 OD008780 and R00 CA137167 (to TPP); Department of Defense W81XWH-10-1-0016 (to RKJ); and an Executive Committee on Research Tosteson Fund for Medical Discovery Fellowship (to KJ). We thank Peigen Huang, John D. Martin, Sylvie Roberge, Carolyn Smith, Tsion Hbatmu, Anna Khachatryan, Shan Chin (Steele Laboratories, MGH, Boston, MA USA), Jennie Zhao and Danny Cao (Wellman Center for Photomedicine, MGH, Boston, MA USA) for experimental assistance, and Hyunsung Park (Harvard School of Engineering and Applied Sciences, Cambridge, MA USA) for technical help in microscopy. We also thank Seong-Ik Hwang (The Boston Dental Hospital, Cheonan, Republic of Korea) for help in illustration.

Address correspondence to: Rakesh K. Jain or Dai Fukumura, 100 Blossom Street, Cox 7, Massachusetts General Hospital, Boston, Massachusetts 02114, USA. Phone: 617.726.8143; Email: jain@steele.mgh.harvard.edu (R.K. Jain); dai@steele.mgh.harvard.edu (D. Fukumura).

EC’s present address is: Department of Medical System Engineering and School of Mechatronics, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea.

