Lasp-1 binds to non-muscle F-actin in vitro and is localized within multiple sites of dynamic actin assembly in vivo

CS Chew, X Chen, JA Parente Jr… - Journal of cell …, 2002 - journals.biologists.com
CS Chew, X Chen, JA Parente Jr, S Tarrer, C Okamoto, HY Qin
Journal of cell science, 2002journals.biologists.com
Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of
[cAMP] i in pancreas, intestine and gastric mucosa and is selectively expressed in cells
within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation
induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular
membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein
that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin …
Lasp-1 has been identified as a signaling molecule that is phosphorylated upon elevation of [cAMP]i in pancreas, intestine and gastric mucosa and is selectively expressed in cells within epithelial tissues. In the gastric parietal cell, cAMP-dependent phosphorylation induces the partial translocation of lasp-1 to the apically directed F-actin-rich canalicular membrane, which is the site of active HCl secretion. Lasp-1 is an unusual modular protein that contains an N-terminal LIM domain, a C-terminal SH3 domain and two internal nebulin repeats. Domain-based analyses have recently categorized this protein as an epithelial representative of the nebulin family, which also includes the actin binding, muscle-specific proteins,nebulin, nebulette and N-RAP.
In this study, we show that lasp-1 binds to non-muscle filamentous (F)actin in vitro in a phosphorylation-dependent manner. In addition, we provide evidence that lasp-1 is concentrated within focal complexes as well as in the leading edges of lamellipodia and the tips of filopodia in non-transformed gastric fibroblasts. In actin pull-down assays, the apparent Kd of bacterially expressed his-tagged lasp-1 binding to F-actin was 2 μM with a saturation stoichiometry of ∼1:7. Phosphorylation of recombinant lasp-1 with recombinant PKA increased the Kd and decreased the Bmax for lasp-1 binding to F-actin. Microsequencing and site-directed mutagenesis localized the major in vivo and in vitro PKA-dependent phosphorylation sites in rabbit lasp-1 to S99 and S146. BLAST searches confirmed that both sites are conserved in human and chicken homologues. Transfection of lasp-1 cDNA encoding for alanine substitutions at S99 and S146, into parietal cells appeared to suppress the cAMP-dependent translocation of lasp-1 to the intracellular canalicular region. In gastric fibroblasts, exposure to the protein kinase C activator, PMA, was correlated with the translocation of lasp-1 into newly formed F-actin-rich lamellipodial extensions and nascent focal complexes. Since lasp-1 does not appear to be phosphorylated by PKC,these data suggest that other mechanisms in addition to cAMP-dependent phosphorylation can mediate the translocation of lasp-1 to regions of dynamic actin turnover. The localization of lasp-1 to these subcellular regions under a range of experimental conditions and the phosphorylation-dependent regulation of this protein in F-actin rich epithelial cells suggests an integral and possibly cell-specific role in modulating cytoskeletal/membrane-based cellular activities.
journals.biologists.com