Human mesenchymal stem (stromal) cells promote the resolution of acute lung injury in part through lipoxin A4

X Fang, J Abbott, L Cheng, JK Colby… - The Journal of …, 2015 - journals.aai.org
X Fang, J Abbott, L Cheng, JK Colby, JW Lee, BD Levy, MA Matthay
The Journal of Immunology, 2015journals.aai.org
Previous studies demonstrated that bone marrow–derived mesenchymal stem (stromal)
cells (MSCs) reduce the severity of acute lung injury in animal models and in an ex vivo
perfused human lung model. However, the mechanisms by which MSCs reduce lung injury
are not well understood. In the present study, we tested the hypothesis that human MSCs
promote the resolution of acute lung injury in part through the effects of a specialized
proresolving mediator lipoxin A 4 (LXA 4). Human alveolar epithelial type II cells and MSCs …
Abstract
Previous studies demonstrated that bone marrow–derived mesenchymal stem (stromal) cells (MSCs) reduce the severity of acute lung injury in animal models and in an ex vivo perfused human lung model. However, the mechanisms by which MSCs reduce lung injury are not well understood. In the present study, we tested the hypothesis that human MSCs promote the resolution of acute lung injury in part through the effects of a specialized proresolving mediator lipoxin A 4 (LXA 4). Human alveolar epithelial type II cells and MSCs expressed biosynthetic enzymes and receptors for LXA 4. Coculture of human MSCs with alveolar epithelial type II cells in the presence of cytomix significantly increased the production of LXA 4 by 117%. The adoptive transfer of MSCs after the onset of LPS-induced acute lung injury (ALI) in mice led to improved survival (48 h), and blocking the LXA 4 receptor with WRW4, a LXA 4 receptor antagonist, significantly reversed the protective effect of MSCs on both survival and the accumulation of pulmonary edema. LXA 4 alone improved survival in mice, and it also significantly decreased the production of TNF-α and MIP-2 in bronchoalveolar lavage fluid. In summary, these experiments demonstrated two novel findings: human MSCs promote the resolution of lung injury in mice in part through the proresolving lipid mediator LXA 4, and LXA 4 itself should be considered as a therapeutic for acute respiratory distress syndrome.
journals.aai.org